CCM 4350

Lecture 14

Security Models 2: Biba, Chinese Wall, Clark Wilson
Introduction

- Bell-LaPadula model designed to capture a specific ‘military’ security policy.
- At one time treated as ‘the model of security’.
- However, security requirements dependent on the application; many applications do not need multi-level security.
- We will now look at models for ‘commercial’ integrity policies.
- We will also examine some theoretical foundations of access control.
Agenda

- Biba model
- Chinese Wall model
- Clark Wilson Model
- Information flow models
Recap: Bell-LaPadula Model

- The Bell-LaPadula model is one of the first models that was created to control access to data.
- The properties of the Bell-LaPadula model are:
 - The simple security property (ss) which is “no read up”
 - The star property (*) which is “no write down”
- A problem with this model is it does not deal with integrity of data: it is possible for a lower level subject to write to a higher classified object
Biba Integrity Model

- The Biba integrity model was published in 1977 at the Mitre Corporation, one year after the Bell-LaPadula model was published 1976.
- The primary motivation for creating this model is the inability of the Bell-LaPadula model to deal with integrity of data.
- The Biba model addresses the problem with the star property of the Bell-LaPadula model, which does not restrict a subject from writing to a more trusted object.
Biba Model

- Integrity policies prohibit the corruption of ‘clean’ high level entities by ‘dirty’ low level entities.
 - Clean and dirty shorthand for high integrity and low integrity.
 - Concrete meaning of integrity levels is application dependent.

- Subjects and objects labelled with elements from a lattice \((L, \leq)\) of integrity levels by functions \(f_S: S \rightarrow L\) and \(f_O: O \rightarrow L\).

- Information may only flow downwards in the integrity lattice; only information flows caused directly by access operations considered.

- Biba model: state machine model similar to BLP; no single high-level integrity policy.
Integrity Levels

- Integrity levels are defined by labels, consisting of two parts:
 - a classification
 - a set of categories

- Integrity levels are given to the subjects and objects in the system

- Integrity labels tell the degree of confidence that may be placed in the data
Subjects and Objects (Recap BLP)

- Like other models, the Biba model supports the access control of both subjects and objects.
 - **Subjects** are the active elements in the system that can access information (processes acting on behalf of the users).
 - **Objects** are the passive system elements for which access can be requested (files, programs, etc.)
- Each subject and object in the Biba model will have a integrity level associated with it
Access Modes

- The Biba model consists of the following access modes:
 - **Modify**: the modify right allows a subject to write to an object. This mode is similar to the write mode in other models.
 - **Observe**: the observe right allows a subject to read an object. This command is synonyms with the read command of most other models.
 - **Invoke**: the invoke right allows a subject to communicate with another subject.
 - **Execute**: the execute right allows a subject to execute an object. The command essentially allows a subject to execute a program which is the object.
Biba With Static Integrity Levels

- **Simple Integrity Property (no write-up):** If subject s can modify (alter) object o, then $f_S(s) \geq f_O(o)$.

- **Integrity ∗-Property:** If subject s can read (observe) object o, then s can have write access to some other object o' only if $f_O(o) \geq f_O(o')$.

- **Invoke Property:** A ‘dirty’ subject s_1 must not touch a ‘clean’ object indirectly by invoking s_2: Subject s_1 can invoke subject s_2 only if $f_S(s_1) \geq f_S(s_2)$.
Simple Integrity Condition

• No Read Down
Integrity * (Star) Property

- No Write-Up
Biba: Dynamic Integrity Levels

- **Low watermark policies** automatically adjust levels (as in the Chinese Wall model):

 - **Subject Low Watermark Policy**: Subject s can read (observe) an object o at any integrity level. The new integrity level of s is $\text{g.l.b.}(f_S(s), f_O(o))$.

 - **Object Low Watermark Policy**: Subject s can modify (alter) an object o at any integrity level. The new integrity level of o is $\text{g.l.b.}(f_S(s), f_O(o))$.
Subject Low Watermark Principle

(Before) (After)
Object Low-Watermark Principle

(Before) Write (After)
Biba for Protection Rings

- **Ring Property**: A ‘dirty’ subject s_1 may invoke a ‘clean’ tool s_2 to touch a ‘clean’ object:

 Subject s_1 can read objects at all integrity levels, modify objects o with $f_S(s_1) \geq f_O(o)$, and invoke a subject s_2 only if $f_S(s_1) \leq f_S(s_2)$.

- The ring property is the opposite of the invoke property!
- Captures integrity protection in operating systems based on protection rings.
Chinese Wall Model

- In financial institutions analysts deal with a number of clients and have to avoid **conflicts of interest**.

- Components:
 - **subjects**: analysts
 - **objects**: data item for a single client
 - **company datasets**: \(y: O \rightarrow C \) gives for each object its company dataset
 - **conflict of interest classes**: companies that are competitors; \(x: O \rightarrow P(C) \) gives for each object \(o \) the companies with a conflict of interest on \(o \)
 - **labels**: company dataset + conflict of interest class
 - **sanitized information**: no access restrictions
Chinese Wall Model – Policies

- **Simple Security Property**: Access is only granted if the object requested
 - is in the same company dataset as an object already accessed by that subject;
 - does not belong to any of the conflict of interest classes of objects already accessed by that subject.

- Formally:
 - \(N = (N_{so})_{s \in S, o \in O} \), Boolean matrix, \(N_{so} = \text{true} \) if \(s \) has accessed \(o \);
 - ss-property: subject \(s \) gets access to object \(o \) only if for all objects \(o' \) with \(N_{so'} = \text{true} \), \(y(o) = y(o') \) or \(y(o) \not\in x(o') \).
Chinese Wall: ∗ - Property

- Indirect information flow: \(A\) and \(B\) are competitors having accounts with the same \(Bank\).
- \(Analyst_A\), dealing with \(A\) and the \(Bank\), updates the \(Bank\) portfolio with sensitive information about \(A\).
- \(Analyst_B\), dealing with \(B\) and the \(Bank\), now has access to information about a competitor.
Chinese Wall: ∗ - Property

- **∗ - Property**: A subject \(s \) is permitted write access to an object only if \(s \) has no read access to any object \(o' \), which is in a different company dataset and is unsanitized.
 - subject \(s \) gets write access to object \(o \) only if \(s \) has no read access to an object \(o' \) with \(y(o) \neq y(o') \) or \(x(o') \neq \{\} \)

- Access rights of subjects change dynamically with every access operation.
Chinese Wall: * - Property

www.gammassl.co.uk/topics

blocked by *-property
Clark-Wilson Model

- Addresses security requirements of commercial applications. ‘Military’ and ‘commercial’ are shorthand for different ways of using computers.
- Emphasis on integrity
 - internal consistency: properties of the internal state of a system
 - external consistency: relation of the internal state of a system to the outside world.
Clark-Wilson: Access Control

- Subjects & objects are ‘labeled’ with programs.
- Programs serve as intermediate layer between subjects and objects.
- Access control:
 - define access operations (transformation procedures) that can be performed on each data item (data types).
 - define the access operations that can be performed by subjects (roles).
- Note the difference between a general purpose operating system (BLP) and an application oriented IT system (Clark-Wilson).
Access Control in CW

user

TP

append must be validated

Log CDI

CDIa

CDIb

UDI

authentication authorization

integrity checks, permissions checked
CW: Certification Rules

Five certification rules suggest how one should check that the security policy is consistent with the application requirements.

- **CR1**: IVPs (initial verification procedures) must ensure that all CDIs (constrained data items) are in a valid state when the IVP is run.
- **CR2**: TPs (transformation procedures) must be certified to be valid, i.e. valid CDIs must always be transformed into valid CDIs. Each TP is certified to access a specific set of CDIs.
- **CR3**: Access rules must satisfy any separation of duties requirements.
- **CR4**: All TPs must write to an append-only log.
- **CR5**: Any TP that takes an UDI (unconstrained data item) as input must either convert the UDI into a CDI or reject the UDI and perform no transformation at all.
Describe mechanisms within the computer system that should enforce the security policy:

- **ER1**: For each TP maintain and protect the list of entries \((CDI_{a}, CDI_{b}, \ldots)\) giving the CDIs the TP is certified to access.
- **ER2**: For each user maintain and protect the list of entries \((TP_{1}, TP_{2}, \ldots)\) specifying the TPs user can execute.
- **ER3**: The system must authenticate each user requesting to execute a TP.
- **ER4**: Only subjects that may certify an access rule for a TP may modify the respective list; this subject must not have execute rights on that TP.
Information Flow Models

- Similar framework as BLP: objects are labeled with security classes (form a lattice), information may flow upwards only.
- Information flow described in terms of conditional entropy (equivocation → information theory)
- Information flows from \(x \) to \(y \) if we learn something about \(x \) by observing \(y \):
 - explicit information flow: \(y := x \)
 - implicit information flow: IF \(x = 0 \) THEN \(y := 1 \)
 - covert channels
- Proving security is undecidable.
Non-interference Models

- A group of users, using a certain set of commands, is *non-interfering* with another group of users if what the first group does with those commands has no effect on what the second group of users can see.

- Take a state machine where low users only see outputs relating to their own inputs. High users are non-interfering with low users if the low users see the same no matter whether the high users had been providing inputs or not.

- Active research area in formal methods.
The more expressive a security model is, both with respect to the security properties and the systems it can describe, the more difficult it is usually to verify security properties.
Summary

- The theoretical foundations for access control are relevant in practice.
- It helps to know in which complexity class your policy language and enforcement algorithm put you in.
- Powerful description languages may leave you with undecidable enforcement problems.
- Much of current efforts on policy languages in ‘trust management’ and web services access control revolves around these issues.
Further Reading

- ESORICS 2000 (Springer Lecture Notes in Computer Science 1895): Checking secure interactions of Smart Card Applets and Verification of a Formal Security Model for Multiapplicative Smart Cards